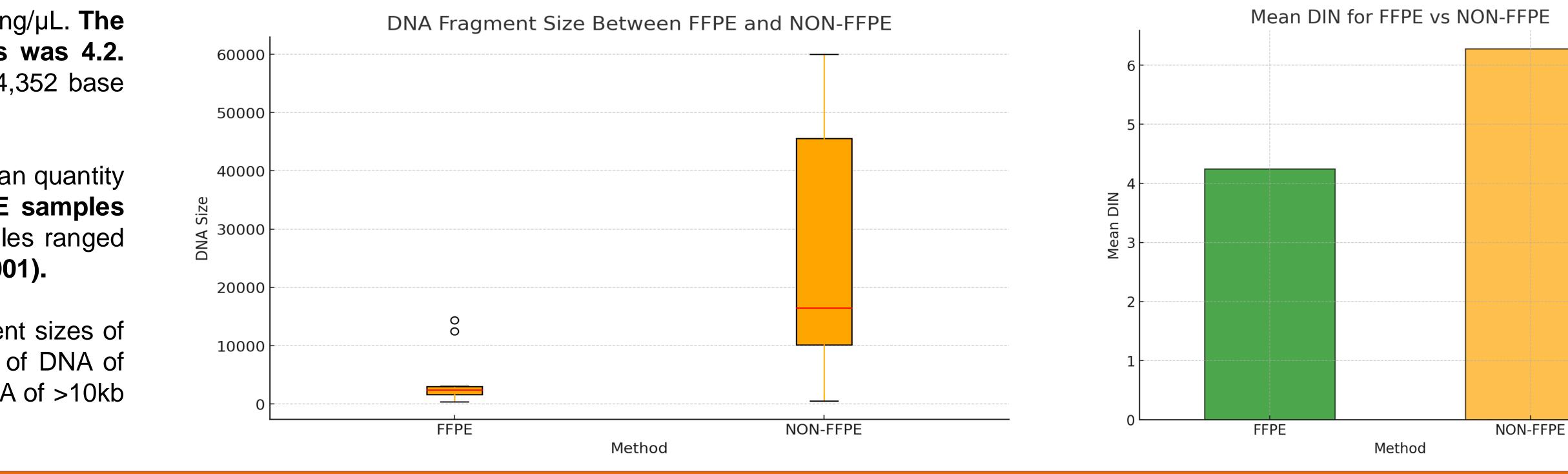


Introduction

- DNA sequencing has become an important tool in diagnosti Starting with Sanger sequencing in 1977 followed by the "Next Sequencing (NGS) technologies".
- Short-read NGS features sequencing of short fragments amplified DNA molecules (100-300 bp).
- Recent technology allowing long-read sequencing is emerging sequences of >10 kb of native DNA.
- The most common clinical samples sent for molecular g formalin-fixed paraffin-embedded (FFPE) tissue. DNA quantity However, the DNA is usually fragmented and of lower qualit FFPE samples.

Results

- The FFPE DNA samples showed a mean quantity of 140.48 ng/µL. **The** average DNA Integrity Number (DIN) for FFPE samples was 4.2. The fragment size of FFPE samples ranged from 364 to 14,352 base pairs (bp), with an average of **3,645 bp**.
- In contrast, the non-FFPE DNA samples demonstrated a mean quantity of 58.7 ng/µL (p 0.0165). The average DIN for non-FFPE samples was 6.2 (p 0.0034). The fragment size for non-FFPE samples ranged from 504 to 60,000 bp, with an average of **26,079 bp (p<0.0001)**.
- Of the 25 non-FFPE samples only one case showed fragment sizes of <1kb. 17 out of 25 non-FFPE samples, showed fragments of DNA of >10kb. 2 out of 13 FFPE samples, showed fragments of DNA of >10kb and <20kb.


Conclusions

- transcriptome sequencing.
- lower quality and smaller DNA fragments can limit the detection of larger molecular alterations.

HIGH MOLECULAR WEIGHT DNA FOR LONG-READ SEQUENCING Laying the groundwork for third-generation sequencing

Jessica Alvarez-Lesmes MD¹, Katherine Drews MD¹, Roberto Ruiz-Cordero MD¹ ¹Department of Pathology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center and Jackson Memorial Hospital Miami, FL.

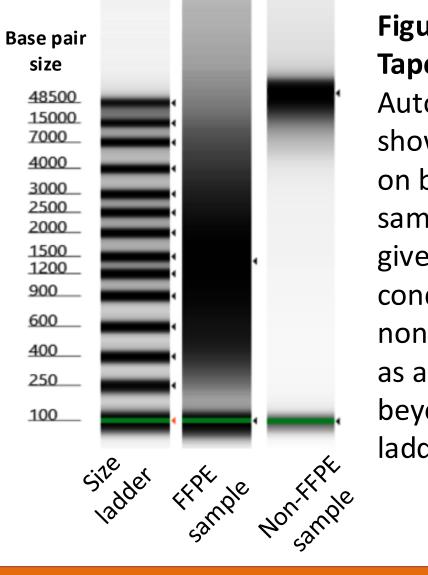
ic pathology. a Generation b of clonally g, generating genetics are is adequate. ity than non-	 A total of 38 samples were selected, 13 FFPE a Non-FFPE samples included variable preserve fresh tissue in 95% ethanol (8/25), previously embedded fresh tissue (5/25), and FNA samples DNA extractions were performed using Maxwe FFPE Plus) and Genexus[™] multisample DNA put DNA quantity and quality were assessed using the Agilent Tape Station System. We assessed the quantity and quality of DNA samples.

• Long-read sequencing offers several advantages, including: detection of larger structural variants, methylation detection, haplotype phasing and

• To fully leverage these features, abundant DNA of high molecular weight is required. While FFPE specimens can be used for long-read sequencing, the

• Non-FFPE specimens, such as cytology smears, fresh OCT-frozen tissue sections or cells collected via FNA into preservative media, typically exhibit a higher quality and average DNA size compared to FFPE specimens, making these specimen types ideal for long-read sequencing.

Methods & Objectives


and 25 non-FFPE.

vation methods, such as smears from stained cytology smears (8/25), OCTes collected in RNALater (4/25).

vell® nucleic acid extraction kits (DNA) urification kit.

ng Qubit fluorometric quantification and

extracted from FFPE and non-FFPE

References & Acknowledgements

We have no conflict of interest to disclose.

Warburton PE, Sebra RP. Long-Read DNA Sequencing: Recent Advances and Remaining Challenges. Annu Rev Genomics Hum Genet. 2023

Figure 1. Agilent TapeStation system. Automated electrophoresis showing DNA quality based on base pair size. FFPE sample appears smeared given the fragmented condition of the DNA. The non-FFPE sample appears as a demarcation line beyond the upper size ladder limit.
